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I
EXA14PLES OF P.D.F. 's OF SUMS AND PRODUCTS

Summary

In this note the calculations of the probability density functions (p.d.f. 's) of

the sums and products of random variables are demonstrated. The random variables are

selected pair-wise from four variables whose probability density functions are shown

below:

(a) Triangular

p(x) o x < -1

l+x -1 < x < 0p(x) -
-x 0< x < 1

-l 0 1 x 0 x > 1

(b) Gaussian

p(X) X
px p(x) =1 e 2

0 x

(c) Rectangular

p(x) 0 x -1

1 p(X) 1-1 <x < 1

-1 0 1 x0 x > 1

(d) Sinusoidal

1 1..._ -1 < x < Ip(x) R 0 ,/.

-1 0 1 x0 x >1



There are altogether 10 different pairs for the sums and the same number of pairs for

the products. They are listed according to the following scheme:

a b c d

a 1 5 6 7

b 2 8 9

c 3 10

d 4

It is evident that the blank spaces represent pairs which are merely repetitions of the

10 basic pairs.

In sections I and II the p.d.f. 's are calculated respectively for the sums and

products of the pairs of variables which are considered statistically independent. Then

in section III, pair 2 (i.e., the gaussian-gaussian combination) is treated for the case

when the two gaussian variables are dependent, as expressed by their covariance matrix.

In section IV, pair 4 is treated for the case when the two sinusoidal variables are

dependent.

With the exception of one case, all results are expressed in terms of tabulated

functions. The formulae, the tables and the graphs of the p.d.f. 's are given for all

these cases.

I. SUM OF TWO INDEPENDENT VARIABLES

Let x and y be two independent random variables and s be their sum. The p.d.f. 's

of x, y, and s are represented by pl(x), p2 (y) and p(s) respectively. The joint p.d.f.

of x and y is given by

W2 (x, y) = Pl(x) p2 (y) • (1-1)
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It is evident from the figure that:

y

/ x+y>S

x + y S

p(s) ds - f x W2(x, y) dy dx

00 -00 -00

"foo 1 ' pl(x) p2 (y) dy dx (1-2)

- _ 00

Differentiating both sides with respect to S:

p(S) w2(x, S-x) dx (I-3a)

-f 00 pl(x) p2 (S-x) dx (I-3b)
_QO

Equation (I-3a) applies to the general case when x and y may or may not be dependent

while equation (I-3b) applies only to the case where x and y are independent. The

integral operation in (I-3b) is called the convolution of p1(x) and p2(y).

Using either (I-3a) or (I-3b), the 10 cases for the sums cited in the sumnary have

been evaluated and the results of the evaluation are listed on the next page. Since

the p.d.f. 's are all even functions of s, only the values for s > 0 are considered.
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I
No. Sum of P(S)

1 [3s3 - 6s2 + 4 0 < s < I

1. a + a 1 s 2 1

0 9>2
8
2

2. b+b 1--
2O-<

3. c+c { (2-s) 0 < s < 2

s>23- c + C,( 4 <,<

0 s >

4. d + d where K is the complete elliptic integral

of the first kind.

0 s>2

(s+1) 0-1 (s+1) -2s 0-1 (s) + (s-1) 0-1 (s-1)

s2 1

+a+b +/2 eT(e coshs-1)] , 0<s<2

where 0-1 is the error integral.

0 s >2

1 (2-s 2 ) 0 < s < 1

6. a + c
T-(S2 - 4s + 4) 1-< s < 2

0 s>2

1 (81 cos'1 s + (i-S) [sin-1 a + sin' (1-s)l

7. a +d + 2-.2 4"'" 0<s<1

S{(1-8) cos- (s-1) + v } 1< s<2

4



No. Sum of Ps

8. b +c 1 [0-1 (8+1) -1 (s-i)l
21-

9. b +d 1 2e ___

10. c + d {Lcsi (-)0 t<

The graphs of these p.d.f. 's are shown as Figs. 1-10. With the exception of case 9,

all graphs were obtained from tabulated functions. Case 9 was obtained by direct

computation* using 134 Computer 1620.

.37

.6

.15

(S)

Fig. 1. P.D.F. ofsawx +Y, xnd yindependent,
x w triangular variate, y a triangular variate.

*W.H. Lob helped in programing this computation.
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-2.0 -1.6 -1.2 -. 8 -. 4 0 .4 .8 1.2 1.6 2.0
8

Fig. 2. P.D.F. of s = x + y, x and y independent,
x = gaussian variate, y = gaussian variate.

.2

.1

-2.0 -1.6 -1.2 -. 8 -. 4 0 .4 .8 1.2 1.6 2.0
a

Fig. 4. P.D.F. of s - x + y, x and y independent,
x rectinuoial variate, y = reinuia variate.

6



.4

-2.0 -1. 6 -l.2 -8 -. 0 . .8 1.2 1. 6'2. 0
s

Fig. 5. P.D.F. of s x + y, x and y independent,
x - triangular variate, y = gaussian variate.

(S

-2.0 -1.6 -1.2 -. 8 -. 4 0 .4 .8 1.2 1.6 2.0

B

Fig. 6. P.D.F. of sa x + y, x and y independent,
x - triangular vait, y recsinuia variate.

.5



-2.0 -1.6 -1.2 -. 8 -. 4 0 .4 .8 1.2 1.6 2.0
8

Fig. 8. P.D.F. of s a x + y, x and y independent,
x a gaussian variate, y = rectangular variate.

-2.0 -1.6 -1.2 -. 8 -. 4 0 .4 .8 1.2 1.6 2.'0
s

Fig. 9. P.D.F. of a = x + y, x and y independent,
x gaussian variate, y -sinusoidal variate.

-2.0 -1.6 -1. -.8 -.4 .4 .8 12 1. 2.

5
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oII. PRODUCT OF TWO INDEPENDENT VARIABLES

i Let x and y be two independent random variables and z be their product. The p.d.f.

of x, y and z are represented by pl(x), p2(y) and p(z) respectively. The joint p.d.f.
Sof x and yis gvnby

W2 (x, y) - Pl (x) p2 (y) (II-1)

'It is evident from the figure that for Z > 0

1.2

y

-1.2 .80 .8 1.2 x

p(z) dz - 2 x w2(x, y) d dx

00 z
- 2f0 fx p(x)p(y) dy dx (11-2)

Differentiating both sides with respect to Z,

p(Z) - 2f W2 (x, K) 1 dx ("l-3a)

a 2 fPl() P 2 (  ! dx . (II-3b)
0

Equations (II-3b) applies only to the case where x and y are independent vhile (II-3a)

is not so restricted.
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Using either (II-3a) or (II-3b), the 10 cases for the products cited in the

summary have been evaluated and the results of the evaluation are listed below. Again,

since the p.d.f. 's are even functions of z, only positive values of z are considered.

No. Product of P(z)

i. a x a J2 [(l+z) ln -- 2(lz) 0 < z < 1
zz

Lo z > 1

i HOW- (iz)

2. b~b where HOWl is the Hankel's function

Lof zero order.

3. cXc 2 z
z> 1

K(l-z 2 ) 0 < z < I

4. d X d where K is the complete elliptic integral
of the first kind.

0 z >1

l--Ei L-)2 00z z 01Z

5. ax b
where Ei is the exponential integral, 00 the
gaussian p.d.f., and 0-1 is the error integral.

Ionl1- (1-z) 0 < z <i1

6. axc z

{o Z > 1

z >1

8. b x c -1 El(_ z2

10



No. Product of p(z)

9. b{X)d

where KOM is the Hnkel's function of
zero order.

1 in 1 + O< z< 1

10. cXd I[]

f0 Z>1

The graphs of these 10 p.d.f. 's are shown as Figs. 11-20.

.2

1.0

-.8

.6

.2

-2.0 -1.6 -1.2 -. 8 -.4 0 .4 .8 1.2 1.6 2.0

z

Fig. Ui. P.D.F. of z = xy, x and y independent,
x = triangular variate, y - triangular variate.

P(z) .2

1.0

.6

.4

.2

-2.0 -1.6 -1.2 -. 8 -. 4 0 .4 .8 1.2 1.6 2.0

z

Fig. 12. P.D.F. of z - xy, x and y independent,
x - gausian variate, y - gaussian variate.
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12

-8

p(Z)

-2.0 -1.6 -1.2 -. 8 -. 4 0 .4 .8 1.2 1.6 2.0

z

Fig. 13. P.D.F. of z a xy, x and y independent,
x - rectangular variate, y m rectangular variate.

.2

.8

-2.0 -1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6 2.0

z

Fig. 14. P.D.F. of z - xy, x and y independent,
x - sinusoidal variate, y = sinusoidal variate.

1.2

.8

p(z

-2.0 -1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6 2.0
z

Fig. 15. P.D.F. of z x zy, x and y independent,
x - triangular variate, y a gaussian variate.
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.4__ 

_-- 
- --- 

- -

-2.0 -1.6 -1.2 -. 8 -4 0 .4 .8 1.2 1.6 2.0

z
rig. 16. P.D.F. of z - xy, x and y independent,

x -triangular variate, y - rectangular variate.

4

-2.0 -1.6 -1.2 -. 8 -. 4 0 .4 .8 1.2 1.6 2.0

z
Pig. 17. P.D.F. of z x y, x and y independent,

x -triangular variate, y s inusoidal variate.

-1.2

-2.0 -1.6 -1.2 -. 8 -. 4 0 .4 .8 1.2 1.6 2.0
z

rig. 1.8. P.D.P. of z -xy, x and y independent
x -gaussian variate, y rezctangular variate
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.8
p(Z)

.6

.4

12

-2.0 -1.6 -1.2 -. -. 4 0 . ' 8 It i.6 2.0
z

Fig. 19. P.D.F. of z m xy, x and y independent,
x -gauasian variate, y a sinusoidal variate.

1.2
P(Z)

1.0

.8

-.6

.4

( ) .2 
A

-2.0 -1.6 -1.2 -. 8 -. 4 0 .4 .8 1.2 1.6 2.0

z

Fig. 20. F.D.F. of z a xy, x and y independent,
x m rectangular variate, y a sinusoidal variate.
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The first four p.d.f. 'a of z are plotted in the same sheet, Fig. 21. For a more

* rational comparison, the variances of the four original p.d.f. 's of x have all been

normalized to unity. In so doing, the scale for the gaussian variable is kept the

same while the ranges of the triangular, rectangular and sinusoidal variables are

extended from (-l, 1) to v/3g.g -, %r), and .52, -/2-) respectively.

2.0
p(z)

1.6

1.2

.8

I\.6

f-2.0 -1.6 -1.2 -. 8 -. 4 0 .4 .8 1.2 .1.6 2.0

Fig. 21. P.D.F.'s of Products of

(a) ---- Two independent gaussian variates

(b) Two independent triangular variates

(c) ----- Two independent rectangular variates

(d) -- Two independent sinusoidal variates;

Normalized variance I



III. SUM AND PROQUCT OF TWO DEPENDE2T GAUSSIAN VARIABLES

Let x and y be two dependent gaussian variables whose joint p.d.f. is

W2Q'x(x. y)
W2 (x, ¥). . A__i e 2 (IzI-l)

where the covariance matrix is

its determinant is

IbI - 1-p2  , (11I-3)

and the quadratic form is

Q1(XY) 1 [X22 2pxy 2] (II I-)

It is required in this section to find the p.d.f. 's of the sum a - x + y and of the

product z - xy.

SUM

First, we determine p(s). From equation (I-3a) and (III-l)

p(s) -f*0 W2(x, s-x) dx

1 - Ex2 - 2px(z-x) + (z-x)2]
-- • 2(l-P2) dx .

Completing the square in the exponent and simplifying
z2  f 0 - L (x z2

p(s) e 4(1 )- e 2-p dx

(x _ )

I1 2.2(l 00)[ 2 (i z]

z6

16



The last factor in the bracket is equal to unity, therefore

z2  .z2

p(s) . _ e 2.2(li ) e L • 2a2  (11-5)

where

- 2(1+p)

is the variance of s.

Figure 22 shows p(s) for four values of the correlation coefficient p (here p is

numerically equal to the covariance of x and y). When p = -1 the variables x and y

are entirely dependent and in fact y = -x with probability one. Therefore, p(s) is a

delta function at s - 0. When p = 0, the variables x and y are independent*. This

particular p(s) is the same as the case 2 of section I, where the variance of s is 2.

When p = 1, the variables x and y are again entirely dependent but this time y - x with

probability one. Therefore p(s), while still gaussian in shape, has a a 2 and variance

a2  4A
.. 3

-2.0 -1.6 -1.2 -.8 -.4 0 .4 .8 1.2 1.6 2.0
s

Fig. 22. P.D.F. of the Sum of 2 Dependent Gaussian Variates.

*Note that it is a property of gaussian variables that zero correlation implies

independence of variables and vice versa.
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Product

Next, we determine p(z). From equations (II-3a) and (Ill-1), we have, for z > 0

p(z) 2 W2(x, z) dx

1 (x2 - 2pz + S)

S fo 2(l-p 2) idx

0
I +z2

1 'f~ 11-Z 2(l -p2 ) ( x2 1
- e dx

-~~~~~ +( 4- 2  v ~ 4 / ~ / ~ /
i - e •-~o ,Cp 21d

px

Let

x
-e

Then the p.d.f. becomes
z- z--- cosh 2e

p(z) e f e G

272e - -7 c o • P 
(11-6

The last step is given on p. 479, Courant-Hilbert, "Methods of Mathematical Physics",

volume I. Ho(l) is the Hankel's function, zero order, first kind, with imaginary

argument. It is tabulated on pp. 236-242, Jahnke and Emde, "Table of Functions", 4th

edition. A similar integral was evaluated by this method in case 2 of section II.

For z < 0 it can be shown that the formula for p(z) remains almost the same except

for a change in the sign of the argument of the function .(). Therefore,

elp2. (111-7)

18



Figure 23 shows p(Z) for three values of p. When p w 1, z a x2 , an p(z) is

reduced to the simpler expression derivable by a more direct method,

0 z <(0

p(z) up(x
2 ) _,(111-8)

z

When

midi zu-x

1 z

p(s) mp(-x 2) (111-9)

0
p(z)

11.2

I \'
I

-2.0 -16 -1.2 -. 8 -4 0 .4 .8 1.2 1.6 2.0
z

Fig. 23. P.D.F. of the Product of 2 Dependent Gaussian Variates.
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When p = O, x and y are independent. The p(z) corresponding to this particular case

is the same as the case 2 of section II, namely

P(z)- i ,O(1,) (I-O

IV. SUM AND PRODUCT OF TWO DEPENDENT INVERSE-SINUSOIDAL VARIABLES

For the variables other than gaussian, there is no longer a one-to-one relation

between statistical dependence and correlation. While it is true that independent

variables are not correlated, zero (linear) correlation does not always insure

independence. In other words, the covariance matrix of two non-gaussian variables

does not specify uniquely the joint p.d.f.

In order to demonstrate the calculation of p.d.f. 's of the sum and product of

two dependent sinusoidal variables, it is desirable to select a suitable dependence

condition so that the joint p.d.f. will resemble to a certain degree that of the

gaussian variables. It is well known that the constant-level contours of the joint

p.d.f. of two gaussian variables are ellipses. In the following example, the

boundary of the joint p.d.f. of two inverse-sinusoidal variables is also an ellipse.

Let 9 and Ct be two independent random variables whose p.d.f. 's pl(8) and p2(a)

are both assumed to be rectangular and centered about zero. However, the range of 9

is assumed to be (-9, n) while that of a is (-A, 6) where 1I1I5 a. Although 9 and a

are independent, the derived variables x = sin 8 and y = sin (9 + a) will be

statistically dependent. We shall evaluate the p.d.f. 's of the sum s = x + y and the

product z - xy. But first, it is required to derive the expression for the joint

p.d.f. W2 (x, y).

20



It is given that p e ~ e t ~

The joint p.d.f. of e and a is

W2(8, a) = pl(e) p2(a) = rect( rect(~ (IV-3)

By the standard technique of change of variables, the joint p.d.f. of (x, y) is given

by

W2(x, Y) - W2(9, a) 1(v-4)

where J is the Jacobian of the transformation, given as follows

LX S~z Cos 9 cos( + a)

a= Cos e cos(O + a)

6x ~z0 cos(e + a)
c~a 6a

.,fl-x2 V--; (IV-5)

*The function rect(< )={l -2 2

2

It can be shown that due to periodicity of the sine function, the results of assumning

either pl(O) =1rect( . or p1.(e) - rect( will be the same.

21



Substituting (IV-3) and (IV-5) into (Iv-4), we get

W2(x, y) - -L rect ( !4 2 ) root ( Y- si1X) 1 W (zv-6)

The general outlines of W2 (0, e + a) and W2 (x, y) in their respective planes are shown

in Fig. 24. The altitude of W2 (8, e + C) is constant over the central area within the

boundaries, but is doubled over the shaded portions at two corners due to the repetition

property of sin(e + a) when e + a > . The function W2 (x, y) is not constant, but is

contained within the ellipse. Over the shaded area at two corners the function is

doubly folded for the above mentioned reason.

22



9+a

600

-900 0 900

-900

(a) Outlines of w(, + a),
9 M an are indepe.ndent.

y -sin(e + a)

1.0

7 

600

2 1

-1.0 s-1 x 0 1.0 - si

(b) Outlines of W2 (x, y), x - sin 9, y asin (8 + 0x).

Fig. 24.
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Now we may proceed to derive the p.d.f. of the sum p(s). With the help of Fig. 24

it is evident that

r1
p(s) [- W2(x, y - 8-x) dx

1 rect sin-lx ) rect ( sin1l(s-x) - sin.'lx) dx

8-1~~. 7C/-x- l--(9-x) 2

(Iv-7)

Within the upper and lower integration limit of x, the function

rect (Sinix) 1 . (Iv-8)

However, in the sam range

rect ( sin1 (s-x) - [0-x s-< x<x 2

x2 < x (IV-9)

where x, and x2 are the roots of the equation

sin 1l(s-x) - sin -1 x = A . (IV-lO)

Therefore, equation (IV-7) may be rewritten as

- x 2  1 dx (IV-1l)
2 xl (lx2) [(.(sx)2]

This equation is applicable for the range of s

0 < < I + a where a = cosA . (IV-12)

For the range

1 + a < s < V2(1 + a)

24



the line corresponding to

x+y= S

cuts partly through the ellipse and partly through the shaded region of the two corners.

Since the integrands are doubled in two of the three segments of the line, the integral

of (IV-7) is better expressed in three parts:

p(s) = si +[ + 2f 1 (IV-13)
8-1 xl X2

The two roots xl and x2 of equation (IV-1O) are identical when

s = A(1 + a) = Smax  (IV-14)

which corresponds to the case when the line x + y = s is Just tangent to the ellipse

of Fig. 24. Therefore, in the range

-/2(1 + a) ca 2 (IV-15)

the required p.d.f. is

p(s) .2f dx . (iv-16)2t -1 /(l _ 2 ) -[- (S - )2 )

The Integrals in (IV-ll), (IV-13) and (IV-16) are all reducible to the elliptic

integrals of the first kind. See, for example, p. 71 of Peirce, "A Short Table of

Integrals." The resulting expressions are summarized on the next page:

25



(i) O<s <l1+a (aMcosA)

p(s) - . (F(a, 0,) - F(a, 02)]

where F is the elliptic integral of the first kind,

Q. sin-1 k, k ,/(1 + !)(l - .)

01 - sin'ib, 02 = sin'-b2  (IV-l7)

bI  (2( l- , b2 =~~()~+~~2s __-xl+ 
-

bs2 + +lb .

x2

(2) 1 + a cs <2(l + a)

P(S) -L. [F(, 01) + 3F(, 02)]29(z'V-18)-

where the symbols are the same as in (1)

(3) 2(l+a)< s<2

p(s) = 1- K(a)69(IV-19)

where K is the complete elliptic integral of the first kind.

The graphs of p(s) are plotted in Fig. 25 for 3 values of a(- cos A). The

corresponding outlines of W2(x, y) are shown in Fig. 26. The values of smax are given

by equation (IV-14). It is seen that for a - 1, i.e., A = 0, x and y are entirely

dependent and y = x with probability one. Therefore, s - 2x, and p(s) is similar to

pl(x) except for a scale factor of 2. For a = -1, i.e., A N n, x and y are statis-

tically independent, and the resultant p(s) is identical to case 4 of section I.
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6j

(a- co-a
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Fig. 26. Outlines Of W2 (x, y)'s for various values of a, a a cos A~.
y 1  ____ 1_

-1/ 1______ -1 Z 7 1 1_

0 -x 0

a-1; Sa =/i of3
y 2' 3X "

-x
0

a I 0; S. /
y y

aI a - 11

28



Product

Now we proceed to derive in a similar manner the p.d.f. of the product p(z), where

z - xy and W2(x, y) is given by equation (iv-6). Referring again to Fig. 241 the

elliptical outline for W2 (x, y) remains the same. However, the lines which correspond

to the constant product axe the hyperbolic segments

xy - Z (iv-18)

x

contained within the square of xy plane. It can be shown that the general expression

of the p.d.f. of z is

p(z) -I lrect ( !.in22C.) rect Xsn()-snx 1 dx.

(Iv-19)

Here, as before, the value of the function

rect (stl)-
within the range z < x < 1. However, the function

[ sin1 (-)- sin-
rect1
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within the range z < x, < x < x 2 < 1 where xs and x2 are the roots of the equation

sin_1 z - sin. 1 x = 6 (IV-20)

x

Therefore, equation (IV-19) is reduced to

p . x2  
I dx . (IV-2l)P(z). xl /xT x2-z2

This integral is again reducible to the elliptic integral of the first kind. The

results are summarized below:

(1) O<z<a (= cosA)

p(z) = -. (F(a, 0i) - F(a, 02)]

where F is the elliptic integral of the first kind,

= sin'1 k, k z

i= sin'-bl, 02 = sin'ib2  (IV-22)

2
.- 7x2 A2r

X1 =1+2az-a 2  
, /,_a2)i. a2 + 4z (a-z)]

2 2 2
x2

(2) a < z < 1 +. a
2

p(z) =-i [2K(a) - F(a, 0i) + F(a, 02)] (IV-23)

where K i the complete elliptic integral of the first
kind and other symbols are the same as in (1).

(3) l+ a<z<l
2 (zV-24)

p(z) - K. K(a)

(4) -l< z< -a
2 (zv-25)

p(Z) - 0

(5) a- <z<O2 (iv-26)
p(z) - 1 I(a, 11) - F(a, 02)]
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The graphs of p(z) are plotted in Fig. 27 for 3 values of a(= cos A). Again the

cases a a 1 and a = -1 correspond to the complete dependence and independence of the

variables x and y.

.7

.611

p~)I \\, /.51 \

a 1 1 1
2 / 2/

a- /

-1./ -.8 -.6 -.4 -. 3 .2 ., .6 .8 1.

I

Fig. 27. P. D. F. of the Product of Two Dependent Sinusoidal Variates.
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